Metamath Proof Explorer


Theorem stoweidlem61

Description: This lemma proves that there exists a function g as in the proof in BrosowskiDeutsh p. 92: g is in the subalgebra, and for all t in T , abs( f(t) - g(t) ) < 2*ε. Here F is used to represent f in the paper, and E is used to represent ε. For this lemma there's the further assumption that the function F to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem61.1 _ t F
stoweidlem61.2 t φ
stoweidlem61.3 K = topGen ran .
stoweidlem61.4 φ J Comp
stoweidlem61.5 T = J
stoweidlem61.6 φ T
stoweidlem61.7 C = J Cn K
stoweidlem61.8 φ A C
stoweidlem61.9 φ f A g A t T f t + g t A
stoweidlem61.10 φ f A g A t T f t g t A
stoweidlem61.11 φ x t T x A
stoweidlem61.12 φ r T t T r t q A q r q t
stoweidlem61.13 φ F C
stoweidlem61.14 φ t T 0 F t
stoweidlem61.15 φ E +
stoweidlem61.16 φ E < 1 3
Assertion stoweidlem61 φ g A t T g t F t < 2 E

Proof

Step Hyp Ref Expression
1 stoweidlem61.1 _ t F
2 stoweidlem61.2 t φ
3 stoweidlem61.3 K = topGen ran .
4 stoweidlem61.4 φ J Comp
5 stoweidlem61.5 T = J
6 stoweidlem61.6 φ T
7 stoweidlem61.7 C = J Cn K
8 stoweidlem61.8 φ A C
9 stoweidlem61.9 φ f A g A t T f t + g t A
10 stoweidlem61.10 φ f A g A t T f t g t A
11 stoweidlem61.11 φ x t T x A
12 stoweidlem61.12 φ r T t T r t q A q r q t
13 stoweidlem61.13 φ F C
14 stoweidlem61.14 φ t T 0 F t
15 stoweidlem61.15 φ E +
16 stoweidlem61.16 φ E < 1 3
17 eqid j 0 n t T | F t j 1 3 E = j 0 n t T | F t j 1 3 E
18 eqid j 0 n t T | j + 1 3 E F t = j 0 n t T | j + 1 3 E F t
19 1 2 3 5 7 17 18 4 6 8 9 10 11 12 13 14 15 16 stoweidlem60 φ g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t
20 nfv t g A
21 2 20 nfan t φ g A
22 15 ad2antrr φ g A t T E +
23 3 5 7 13 fcnre φ F : T
24 23 ffvelrnda φ t T F t
25 24 adantlr φ g A t T F t
26 8 sselda φ g A g C
27 3 5 7 26 fcnre φ g A g : T
28 27 ffvelrnda φ g A t T g t
29 simpll1 E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t E +
30 simpll2 E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t F t
31 simpll3 E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t g t
32 simplr E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t j
33 simprll E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t j 4 3 E < F t
34 simprlr E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t F t j 1 3 E
35 simprrr E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t j 4 3 E < g t
36 simprrl E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t g t < j + 1 3 E
37 29 30 31 32 33 34 35 36 stoweidlem13 E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t g t F t < 2 E
38 37 rexlimdva2 E + F t g t j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t g t F t < 2 E
39 22 25 28 38 syl3anc φ g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t g t F t < 2 E
40 21 39 ralimdaa φ g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t t T g t F t < 2 E
41 40 reximdva φ g A t T j j 4 3 E < F t F t j 1 3 E g t < j + 1 3 E j 4 3 E < g t g A t T g t F t < 2 E
42 19 41 mpd φ g A t T g t F t < 2 E