Metamath Proof Explorer


Theorem stoweidlem62

Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows BrosowskiDeutsh p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypotheses stoweidlem62.1 _ t F
stoweidlem62.2 f φ
stoweidlem62.3 t φ
stoweidlem62.4 H = t T F t sup ran F <
stoweidlem62.5 K = topGen ran .
stoweidlem62.6 T = J
stoweidlem62.7 φ J Comp
stoweidlem62.8 C = J Cn K
stoweidlem62.9 φ A C
stoweidlem62.10 φ f A g A t T f t + g t A
stoweidlem62.11 φ f A g A t T f t g t A
stoweidlem62.12 φ x t T x A
stoweidlem62.13 φ r T t T r t q A q r q t
stoweidlem62.14 φ F C
stoweidlem62.15 φ E +
stoweidlem62.16 φ T
stoweidlem62.17 φ E < 1 3
Assertion stoweidlem62 φ f A t T f t F t < E

Proof

Step Hyp Ref Expression
1 stoweidlem62.1 _ t F
2 stoweidlem62.2 f φ
3 stoweidlem62.3 t φ
4 stoweidlem62.4 H = t T F t sup ran F <
5 stoweidlem62.5 K = topGen ran .
6 stoweidlem62.6 T = J
7 stoweidlem62.7 φ J Comp
8 stoweidlem62.8 C = J Cn K
9 stoweidlem62.9 φ A C
10 stoweidlem62.10 φ f A g A t T f t + g t A
11 stoweidlem62.11 φ f A g A t T f t g t A
12 stoweidlem62.12 φ x t T x A
13 stoweidlem62.13 φ r T t T r t q A q r q t
14 stoweidlem62.14 φ F C
15 stoweidlem62.15 φ E +
16 stoweidlem62.16 φ T
17 stoweidlem62.17 φ E < 1 3
18 nfmpt1 _ t t T F t sup ran F <
19 4 18 nfcxfr _ t H
20 eleq1w g = h g A h A
21 20 3anbi3d g = h φ f A g A φ f A h A
22 fveq1 g = h g t = h t
23 22 oveq2d g = h f t + g t = f t + h t
24 23 mpteq2dv g = h t T f t + g t = t T f t + h t
25 24 eleq1d g = h t T f t + g t A t T f t + h t A
26 21 25 imbi12d g = h φ f A g A t T f t + g t A φ f A h A t T f t + h t A
27 26 10 chvarvv φ f A h A t T f t + h t A
28 22 oveq2d g = h f t g t = f t h t
29 28 mpteq2dv g = h t T f t g t = t T f t h t
30 29 eleq1d g = h t T f t g t A t T f t h t A
31 21 30 imbi12d g = h φ f A g A t T f t g t A φ f A h A t T f t h t A
32 31 11 chvarvv φ f A h A t T f t h t A
33 1 nfrn _ t ran F
34 nfcv _ t
35 nfcv _ t <
36 33 34 35 nfinf _ t sup ran F <
37 eqid T × sup ran F < = T × sup ran F <
38 cmptop J Comp J Top
39 7 38 syl φ J Top
40 14 8 eleqtrdi φ F J Cn K
41 1 3 6 5 7 40 16 stoweidlem29 φ sup ran F < ran F sup ran F < t T sup ran F < F t
42 41 simp2d φ sup ran F <
43 1 36 3 6 37 5 39 8 14 42 stoweidlem47 φ t T F t sup ran F < C
44 4 43 eqeltrid φ H C
45 41 simp3d φ t T sup ran F < F t
46 45 r19.21bi φ t T sup ran F < F t
47 5 6 8 14 fcnre φ F : T
48 47 ffvelrnda φ t T F t
49 42 adantr φ t T sup ran F <
50 48 49 subge0d φ t T 0 F t sup ran F < sup ran F < F t
51 46 50 mpbird φ t T 0 F t sup ran F <
52 simpr φ t T t T
53 48 49 resubcld φ t T F t sup ran F <
54 4 fvmpt2 t T F t sup ran F < H t = F t sup ran F <
55 52 53 54 syl2anc φ t T H t = F t sup ran F <
56 51 55 breqtrrd φ t T 0 H t
57 56 ex φ t T 0 H t
58 3 57 ralrimi φ t T 0 H t
59 15 rphalfcld φ E 2 +
60 15 rpred φ E
61 60 rehalfcld φ E 2
62 3re 3
63 3ne0 3 0
64 62 63 rereccli 1 3
65 64 a1i φ 1 3
66 rphalflt E + E 2 < E
67 15 66 syl φ E 2 < E
68 61 60 65 67 17 lttrd φ E 2 < 1 3
69 19 3 5 7 6 16 8 9 27 32 12 13 44 58 59 68 stoweidlem61 φ h A t T h t H t < 2 E 2
70 nfra1 t t T h t H t < 2 E 2
71 3 70 nfan t φ t T h t H t < 2 E 2
72 rsp t T h t H t < 2 E 2 t T h t H t < 2 E 2
73 15 rpcnd φ E
74 2cnd φ 2
75 2ne0 2 0
76 75 a1i φ 2 0
77 73 74 76 divcan2d φ 2 E 2 = E
78 77 breq2d φ h t H t < 2 E 2 h t H t < E
79 78 biimpd φ h t H t < 2 E 2 h t H t < E
80 72 79 sylan9r φ t T h t H t < 2 E 2 t T h t H t < E
81 71 80 ralrimi φ t T h t H t < 2 E 2 t T h t H t < E
82 81 ex φ t T h t H t < 2 E 2 t T h t H t < E
83 82 reximdv φ h A t T h t H t < 2 E 2 h A t T h t H t < E
84 69 83 mpd φ h A t T h t H t < E
85 nfmpt1 _ t t T h t + sup ran F <
86 nfcv _ t h
87 nfv t h A
88 nfra1 t t T h t H t < E
89 87 88 nfan t h A t T h t H t < E
90 3 89 nfan t φ h A t T h t H t < E
91 eqid t T h t + sup ran F < = t T h t + sup ran F <
92 47 adantr φ h A t T h t H t < E F : T
93 42 adantr φ h A t T h t H t < E sup ran F <
94 10 3adant1r φ h A t T h t H t < E f A g A t T f t + g t A
95 12 adantlr φ h A t T h t H t < E x t T x A
96 9 sseld φ f A f C
97 8 eleq2i f C f J Cn K
98 96 97 syl6ib φ f A f J Cn K
99 eqid J = J
100 uniretop = topGen ran .
101 5 unieqi K = topGen ran .
102 100 101 eqtr4i = K
103 99 102 cnf f J Cn K f : J
104 98 103 syl6 φ f A f : J
105 feq2 T = J f : T f : J
106 6 105 mp1i φ f : T f : J
107 104 106 sylibrd φ f A f : T
108 2 107 ralrimi φ f A f : T
109 108 adantr φ h A t T h t H t < E f A f : T
110 simprl φ h A t T h t H t < E h A
111 55 eqcomd φ t T F t sup ran F < = H t
112 111 oveq2d φ t T h t F t sup ran F < = h t H t
113 112 fveq2d φ t T h t F t sup ran F < = h t H t
114 113 adantlr φ h A t T h t H t < E t T h t F t sup ran F < = h t H t
115 simplrr φ h A t T h t H t < E t T t T h t H t < E
116 rspa t T h t H t < E t T h t H t < E
117 115 116 sylancom φ h A t T h t H t < E t T h t H t < E
118 114 117 eqbrtrd φ h A t T h t H t < E t T h t F t sup ran F < < E
119 118 ex φ h A t T h t H t < E t T h t F t sup ran F < < E
120 90 119 ralrimi φ h A t T h t H t < E t T h t F t sup ran F < < E
121 85 86 36 90 91 92 93 94 95 109 110 120 stoweidlem21 φ h A t T h t H t < E f A t T f t F t < E
122 84 121 rexlimddv φ f A t T f t F t < E