Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem7.1 |
|
2 |
|
stoweidlem7.2 |
|
3 |
|
stoweidlem7.3 |
|
4 |
|
stoweidlem7.4 |
|
5 |
|
stoweidlem7.5 |
|
6 |
|
stoweidlem7.6 |
|
7 |
|
stoweidlem7.7 |
|
8 |
|
nnuz |
|
9 |
|
1zzd |
|
10 |
|
oveq2 |
|
11 |
|
nnnn0 |
|
12 |
11
|
adantl |
|
13 |
5
|
rpcnd |
|
14 |
13
|
adantr |
|
15 |
14 12
|
expcld |
|
16 |
2 10 12 15
|
fvmptd3 |
|
17 |
|
1red |
|
18 |
17
|
renegcld |
|
19 |
|
0red |
|
20 |
5
|
rpred |
|
21 |
|
neg1lt0 |
|
22 |
21
|
a1i |
|
23 |
5
|
rpgt0d |
|
24 |
18 19 20 22 23
|
lttrd |
|
25 |
20 17
|
absltd |
|
26 |
24 6 25
|
mpbir2and |
|
27 |
13 26
|
expcnv |
|
28 |
2 27
|
eqbrtrid |
|
29 |
8 9 7 16 28
|
climi |
|
30 |
|
r19.26 |
|
31 |
30
|
simprbi |
|
32 |
31
|
ad2antlr |
|
33 |
|
oveq2 |
|
34 |
33
|
oveq1d |
|
35 |
34
|
fveq2d |
|
36 |
35
|
breq1d |
|
37 |
36
|
rspccva |
|
38 |
32 37
|
sylancom |
|
39 |
|
simplll |
|
40 |
39 5
|
syl |
|
41 |
40
|
rpred |
|
42 |
|
simpllr |
|
43 |
|
nnnn0 |
|
44 |
42 43
|
syl |
|
45 |
|
eluznn0 |
|
46 |
44 45
|
sylancom |
|
47 |
41 46
|
reexpcld |
|
48 |
|
rpre |
|
49 |
39 7 48
|
3syl |
|
50 |
|
recn |
|
51 |
50
|
subid1d |
|
52 |
51
|
adantr |
|
53 |
52
|
fveq2d |
|
54 |
53
|
breq1d |
|
55 |
|
abslt |
|
56 |
54 55
|
bitrd |
|
57 |
47 49 56
|
syl2anc |
|
58 |
38 57
|
mpbid |
|
59 |
58
|
simprd |
|
60 |
|
eluznn |
|
61 |
42 60
|
sylancom |
|
62 |
20
|
adantr |
|
63 |
|
nnnn0 |
|
64 |
63
|
adantl |
|
65 |
62 64
|
reexpcld |
|
66 |
7
|
rpred |
|
67 |
66
|
adantr |
|
68 |
|
1red |
|
69 |
65 67 68
|
ltsub2d |
|
70 |
39 61 69
|
syl2anc |
|
71 |
59 70
|
mpbid |
|
72 |
71
|
ralrimiva |
|
73 |
33
|
oveq2d |
|
74 |
73
|
breq2d |
|
75 |
74
|
cbvralvw |
|
76 |
72 75
|
sylibr |
|
77 |
76
|
ex |
|
78 |
77
|
reximdva |
|
79 |
29 78
|
mpd |
|
80 |
|
oveq2 |
|
81 |
3
|
recnd |
|
82 |
|
0lt1 |
|
83 |
82
|
a1i |
|
84 |
19 17 3 83 4
|
lttrd |
|
85 |
84
|
gt0ne0d |
|
86 |
81 85
|
reccld |
|
87 |
86
|
adantr |
|
88 |
87 12
|
expcld |
|
89 |
1 80 12 88
|
fvmptd3 |
|
90 |
3 85
|
rereccld |
|
91 |
3 84
|
recgt0d |
|
92 |
18 19 90 22 91
|
lttrd |
|
93 |
|
ltdiv23 |
|
94 |
17 3 84 17 83 93
|
syl122anc |
|
95 |
|
1cnd |
|
96 |
95
|
div1d |
|
97 |
96
|
breq1d |
|
98 |
94 97
|
bitrd |
|
99 |
4 98
|
mpbird |
|
100 |
90 17
|
absltd |
|
101 |
92 99 100
|
mpbir2and |
|
102 |
86 101
|
expcnv |
|
103 |
1 102
|
eqbrtrid |
|
104 |
8 9 7 89 103
|
climi2 |
|
105 |
|
simpll |
|
106 |
|
uznnssnn |
|
107 |
106
|
ad2antlr |
|
108 |
|
simpr |
|
109 |
107 108
|
sseldd |
|
110 |
88
|
subid1d |
|
111 |
110
|
fveq2d |
|
112 |
90
|
adantr |
|
113 |
112 12
|
reexpcld |
|
114 |
19 90 91
|
ltled |
|
115 |
114
|
adantr |
|
116 |
112 12 115
|
expge0d |
|
117 |
113 116
|
absidd |
|
118 |
111 117
|
eqtrd |
|
119 |
118
|
breq1d |
|
120 |
119
|
biimpd |
|
121 |
105 109 120
|
syl2anc |
|
122 |
121
|
ralimdva |
|
123 |
122
|
reximdva |
|
124 |
104 123
|
mpd |
|
125 |
8
|
rexanuz2 |
|
126 |
79 124 125
|
sylanbrc |
|
127 |
|
simpr |
|
128 |
|
nnz |
|
129 |
|
uzid |
|
130 |
128 129
|
syl |
|
131 |
130
|
ad2antlr |
|
132 |
|
oveq2 |
|
133 |
132
|
oveq2d |
|
134 |
133
|
breq2d |
|
135 |
|
oveq2 |
|
136 |
135
|
breq1d |
|
137 |
134 136
|
anbi12d |
|
138 |
137
|
rspccva |
|
139 |
127 131 138
|
syl2anc |
|
140 |
|
1cnd |
|
141 |
81 85
|
jca |
|
142 |
141
|
adantr |
|
143 |
43
|
adantl |
|
144 |
|
expdiv |
|
145 |
140 142 143 144
|
syl3anc |
|
146 |
128
|
adantl |
|
147 |
|
1exp |
|
148 |
146 147
|
syl |
|
149 |
148
|
oveq1d |
|
150 |
145 149
|
eqtrd |
|
151 |
150
|
breq1d |
|
152 |
151
|
adantr |
|
153 |
152
|
anbi2d |
|
154 |
139 153
|
mpbid |
|
155 |
154
|
ex |
|
156 |
155
|
reximdva |
|
157 |
126 156
|
mpd |
|