Metamath Proof Explorer


Theorem stoweidlem7

Description: This lemma is used to prove that q_n as in the proof of Lemma 1 in BrosowskiDeutsh p. 91, (at the top of page 91), is such that q_n < ε on T \ U , and q_n > 1 - ε on V . Here it is proven that, for n large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable A is used to represent (k*δ) in the paper, and B is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem7.1 F = i 0 1 A i
stoweidlem7.2 G = i 0 B i
stoweidlem7.3 φ A
stoweidlem7.4 φ 1 < A
stoweidlem7.5 φ B +
stoweidlem7.6 φ B < 1
stoweidlem7.7 φ E +
Assertion stoweidlem7 φ n 1 E < 1 B n 1 A n < E

Proof

Step Hyp Ref Expression
1 stoweidlem7.1 F = i 0 1 A i
2 stoweidlem7.2 G = i 0 B i
3 stoweidlem7.3 φ A
4 stoweidlem7.4 φ 1 < A
5 stoweidlem7.5 φ B +
6 stoweidlem7.6 φ B < 1
7 stoweidlem7.7 φ E +
8 nnuz = 1
9 1zzd φ 1
10 oveq2 i = k B i = B k
11 nnnn0 k k 0
12 11 adantl φ k k 0
13 5 rpcnd φ B
14 13 adantr φ k B
15 14 12 expcld φ k B k
16 2 10 12 15 fvmptd3 φ k G k = B k
17 1red φ 1
18 17 renegcld φ 1
19 0red φ 0
20 5 rpred φ B
21 neg1lt0 1 < 0
22 21 a1i φ 1 < 0
23 5 rpgt0d φ 0 < B
24 18 19 20 22 23 lttrd φ 1 < B
25 20 17 absltd φ B < 1 1 < B B < 1
26 24 6 25 mpbir2and φ B < 1
27 13 26 expcnv φ i 0 B i 0
28 2 27 eqbrtrid φ G 0
29 8 9 7 16 28 climi φ n k n B k B k 0 < E
30 r19.26 k n B k B k 0 < E k n B k k n B k 0 < E
31 30 simprbi k n B k B k 0 < E k n B k 0 < E
32 31 ad2antlr φ n k n B k B k 0 < E i n k n B k 0 < E
33 oveq2 k = i B k = B i
34 33 oveq1d k = i B k 0 = B i 0
35 34 fveq2d k = i B k 0 = B i 0
36 35 breq1d k = i B k 0 < E B i 0 < E
37 36 rspccva k n B k 0 < E i n B i 0 < E
38 32 37 sylancom φ n k n B k B k 0 < E i n B i 0 < E
39 simplll φ n k n B k B k 0 < E i n φ
40 39 5 syl φ n k n B k B k 0 < E i n B +
41 40 rpred φ n k n B k B k 0 < E i n B
42 simpllr φ n k n B k B k 0 < E i n n
43 nnnn0 n n 0
44 42 43 syl φ n k n B k B k 0 < E i n n 0
45 eluznn0 n 0 i n i 0
46 44 45 sylancom φ n k n B k B k 0 < E i n i 0
47 41 46 reexpcld φ n k n B k B k 0 < E i n B i
48 rpre E + E
49 39 7 48 3syl φ n k n B k B k 0 < E i n E
50 recn B i B i
51 50 subid1d B i B i 0 = B i
52 51 adantr B i E B i 0 = B i
53 52 fveq2d B i E B i 0 = B i
54 53 breq1d B i E B i 0 < E B i < E
55 abslt B i E B i < E E < B i B i < E
56 54 55 bitrd B i E B i 0 < E E < B i B i < E
57 47 49 56 syl2anc φ n k n B k B k 0 < E i n B i 0 < E E < B i B i < E
58 38 57 mpbid φ n k n B k B k 0 < E i n E < B i B i < E
59 58 simprd φ n k n B k B k 0 < E i n B i < E
60 eluznn n i n i
61 42 60 sylancom φ n k n B k B k 0 < E i n i
62 20 adantr φ i B
63 nnnn0 i i 0
64 63 adantl φ i i 0
65 62 64 reexpcld φ i B i
66 7 rpred φ E
67 66 adantr φ i E
68 1red φ i 1
69 65 67 68 ltsub2d φ i B i < E 1 E < 1 B i
70 39 61 69 syl2anc φ n k n B k B k 0 < E i n B i < E 1 E < 1 B i
71 59 70 mpbid φ n k n B k B k 0 < E i n 1 E < 1 B i
72 71 ralrimiva φ n k n B k B k 0 < E i n 1 E < 1 B i
73 33 oveq2d k = i 1 B k = 1 B i
74 73 breq2d k = i 1 E < 1 B k 1 E < 1 B i
75 74 cbvralvw k n 1 E < 1 B k i n 1 E < 1 B i
76 72 75 sylibr φ n k n B k B k 0 < E k n 1 E < 1 B k
77 76 ex φ n k n B k B k 0 < E k n 1 E < 1 B k
78 77 reximdva φ n k n B k B k 0 < E n k n 1 E < 1 B k
79 29 78 mpd φ n k n 1 E < 1 B k
80 oveq2 i = k 1 A i = 1 A k
81 3 recnd φ A
82 0lt1 0 < 1
83 82 a1i φ 0 < 1
84 19 17 3 83 4 lttrd φ 0 < A
85 84 gt0ne0d φ A 0
86 81 85 reccld φ 1 A
87 86 adantr φ k 1 A
88 87 12 expcld φ k 1 A k
89 1 80 12 88 fvmptd3 φ k F k = 1 A k
90 3 85 rereccld φ 1 A
91 3 84 recgt0d φ 0 < 1 A
92 18 19 90 22 91 lttrd φ 1 < 1 A
93 ltdiv23 1 A 0 < A 1 0 < 1 1 A < 1 1 1 < A
94 17 3 84 17 83 93 syl122anc φ 1 A < 1 1 1 < A
95 1cnd φ 1
96 95 div1d φ 1 1 = 1
97 96 breq1d φ 1 1 < A 1 < A
98 94 97 bitrd φ 1 A < 1 1 < A
99 4 98 mpbird φ 1 A < 1
100 90 17 absltd φ 1 A < 1 1 < 1 A 1 A < 1
101 92 99 100 mpbir2and φ 1 A < 1
102 86 101 expcnv φ i 0 1 A i 0
103 1 102 eqbrtrid φ F 0
104 8 9 7 89 103 climi2 φ n k n 1 A k 0 < E
105 simpll φ n k n φ
106 uznnssnn n n
107 106 ad2antlr φ n k n n
108 simpr φ n k n k n
109 107 108 sseldd φ n k n k
110 88 subid1d φ k 1 A k 0 = 1 A k
111 110 fveq2d φ k 1 A k 0 = 1 A k
112 90 adantr φ k 1 A
113 112 12 reexpcld φ k 1 A k
114 19 90 91 ltled φ 0 1 A
115 114 adantr φ k 0 1 A
116 112 12 115 expge0d φ k 0 1 A k
117 113 116 absidd φ k 1 A k = 1 A k
118 111 117 eqtrd φ k 1 A k 0 = 1 A k
119 118 breq1d φ k 1 A k 0 < E 1 A k < E
120 119 biimpd φ k 1 A k 0 < E 1 A k < E
121 105 109 120 syl2anc φ n k n 1 A k 0 < E 1 A k < E
122 121 ralimdva φ n k n 1 A k 0 < E k n 1 A k < E
123 122 reximdva φ n k n 1 A k 0 < E n k n 1 A k < E
124 104 123 mpd φ n k n 1 A k < E
125 8 rexanuz2 n k n 1 E < 1 B k 1 A k < E n k n 1 E < 1 B k n k n 1 A k < E
126 79 124 125 sylanbrc φ n k n 1 E < 1 B k 1 A k < E
127 simpr φ n k n 1 E < 1 B k 1 A k < E k n 1 E < 1 B k 1 A k < E
128 nnz n n
129 uzid n n n
130 128 129 syl n n n
131 130 ad2antlr φ n k n 1 E < 1 B k 1 A k < E n n
132 oveq2 k = n B k = B n
133 132 oveq2d k = n 1 B k = 1 B n
134 133 breq2d k = n 1 E < 1 B k 1 E < 1 B n
135 oveq2 k = n 1 A k = 1 A n
136 135 breq1d k = n 1 A k < E 1 A n < E
137 134 136 anbi12d k = n 1 E < 1 B k 1 A k < E 1 E < 1 B n 1 A n < E
138 137 rspccva k n 1 E < 1 B k 1 A k < E n n 1 E < 1 B n 1 A n < E
139 127 131 138 syl2anc φ n k n 1 E < 1 B k 1 A k < E 1 E < 1 B n 1 A n < E
140 1cnd φ n 1
141 81 85 jca φ A A 0
142 141 adantr φ n A A 0
143 43 adantl φ n n 0
144 expdiv 1 A A 0 n 0 1 A n = 1 n A n
145 140 142 143 144 syl3anc φ n 1 A n = 1 n A n
146 128 adantl φ n n
147 1exp n 1 n = 1
148 146 147 syl φ n 1 n = 1
149 148 oveq1d φ n 1 n A n = 1 A n
150 145 149 eqtrd φ n 1 A n = 1 A n
151 150 breq1d φ n 1 A n < E 1 A n < E
152 151 adantr φ n k n 1 E < 1 B k 1 A k < E 1 A n < E 1 A n < E
153 152 anbi2d φ n k n 1 E < 1 B k 1 A k < E 1 E < 1 B n 1 A n < E 1 E < 1 B n 1 A n < E
154 139 153 mpbid φ n k n 1 E < 1 B k 1 A k < E 1 E < 1 B n 1 A n < E
155 154 ex φ n k n 1 E < 1 B k 1 A k < E 1 E < 1 B n 1 A n < E
156 155 reximdva φ n k n 1 E < 1 B k 1 A k < E n 1 E < 1 B n 1 A n < E
157 126 156 mpd φ n 1 E < 1 B n 1 A n < E