Metamath Proof Explorer


Theorem stoweidlem8

Description: Lemma for stoweid : two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem8.1 φ f A g A t T f t + g t A
stoweidlem8.2 _ t F
stoweidlem8.3 _ t G
Assertion stoweidlem8 φ F A G A t T F t + G t A

Proof

Step Hyp Ref Expression
1 stoweidlem8.1 φ f A g A t T f t + g t A
2 stoweidlem8.2 _ t F
3 stoweidlem8.3 _ t G
4 simp3 φ F A G A G A
5 eleq1 g = G g A G A
6 5 3anbi3d g = G φ F A g A φ F A G A
7 3 nfeq2 t g = G
8 fveq1 g = G g t = G t
9 8 oveq2d g = G F t + g t = F t + G t
10 9 adantr g = G t T F t + g t = F t + G t
11 7 10 mpteq2da g = G t T F t + g t = t T F t + G t
12 11 eleq1d g = G t T F t + g t A t T F t + G t A
13 6 12 imbi12d g = G φ F A g A t T F t + g t A φ F A G A t T F t + G t A
14 simp2 φ F A g A F A
15 eleq1 f = F f A F A
16 15 3anbi2d f = F φ f A g A φ F A g A
17 2 nfeq2 t f = F
18 fveq1 f = F f t = F t
19 18 oveq1d f = F f t + g t = F t + g t
20 19 adantr f = F t T f t + g t = F t + g t
21 17 20 mpteq2da f = F t T f t + g t = t T F t + g t
22 21 eleq1d f = F t T f t + g t A t T F t + g t A
23 16 22 imbi12d f = F φ f A g A t T f t + g t A φ F A g A t T F t + g t A
24 23 1 vtoclg F A φ F A g A t T F t + g t A
25 14 24 mpcom φ F A g A t T F t + g t A
26 13 25 vtoclg G A φ F A G A t T F t + G t A
27 4 26 mpcom φ F A G A t T F t + G t A