Metamath Proof Explorer


Theorem strfv2

Description: A variation on strfv to avoid asserting that S itself is a function, which involves sethood of all the ordered pair components of S . (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses strfv2.s S V
strfv2.f Fun S -1 -1
strfv2.e E = Slot E ndx
strfv2.n E ndx C S
Assertion strfv2 C V C = E S

Proof

Step Hyp Ref Expression
1 strfv2.s S V
2 strfv2.f Fun S -1 -1
3 strfv2.e E = Slot E ndx
4 strfv2.n E ndx C S
5 1 a1i C V S V
6 2 a1i C V Fun S -1 -1
7 4 a1i C V E ndx C S
8 id C V C V
9 3 5 6 7 8 strfv2d C V C = E S