Metamath Proof Explorer


Theorem strfv3

Description: Variant on strfv for large structures. (Contributed by Mario Carneiro, 10-Jan-2017)

Ref Expression
Hypotheses strfv3.u φ U = S
strfv3.s S Struct X
strfv3.e E = Slot E ndx
strfv3.n E ndx C S
strfv3.c φ C V
strfv3.a A = E U
Assertion strfv3 φ A = C

Proof

Step Hyp Ref Expression
1 strfv3.u φ U = S
2 strfv3.s S Struct X
3 strfv3.e E = Slot E ndx
4 strfv3.n E ndx C S
5 strfv3.c φ C V
6 strfv3.a A = E U
7 2 3 4 strfv C V C = E S
8 5 7 syl φ C = E S
9 1 fveq2d φ E U = E S
10 8 9 eqtr4d φ C = E U
11 6 10 eqtr4id φ A = C