Database
BASIC STRUCTURES
Extensible structures
Basic definitions
Structure component indices
strfvd
Next ⟩
strfv2d
Metamath Proof Explorer
Ascii
Unicode
Theorem
strfvd
Description:
Deduction version of
strfv
.
(Contributed by
Mario Carneiro
, 15-Nov-2014)
Ref
Expression
Hypotheses
strfvd.e
⊢
E
=
Slot
E
⁡
ndx
strfvd.s
⊢
φ
→
S
∈
V
strfvd.f
⊢
φ
→
Fun
⁡
S
strfvd.n
⊢
φ
→
E
⁡
ndx
C
∈
S
Assertion
strfvd
⊢
φ
→
C
=
E
⁡
S
Proof
Step
Hyp
Ref
Expression
1
strfvd.e
⊢
E
=
Slot
E
⁡
ndx
2
strfvd.s
⊢
φ
→
S
∈
V
3
strfvd.f
⊢
φ
→
Fun
⁡
S
4
strfvd.n
⊢
φ
→
E
⁡
ndx
C
∈
S
5
1
2
strfvnd
⊢
φ
→
E
⁡
S
=
S
⁡
E
⁡
ndx
6
funopfv
⊢
Fun
⁡
S
→
E
⁡
ndx
C
∈
S
→
S
⁡
E
⁡
ndx
=
C
7
3
4
6
sylc
⊢
φ
→
S
⁡
E
⁡
ndx
=
C
8
5
7
eqtr2d
⊢
φ
→
C
=
E
⁡
S