Metamath Proof Explorer


Theorem strfvd

Description: Deduction version of strfv . (Contributed by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses strfvd.e E = Slot E ndx
strfvd.s φ S V
strfvd.f φ Fun S
strfvd.n φ E ndx C S
Assertion strfvd φ C = E S

Proof

Step Hyp Ref Expression
1 strfvd.e E = Slot E ndx
2 strfvd.s φ S V
3 strfvd.f φ Fun S
4 strfvd.n φ E ndx C S
5 1 2 strfvnd φ E S = S E ndx
6 funopfv Fun S E ndx C S S E ndx = C
7 3 4 6 sylc φ S E ndx = C
8 5 7 eqtr2d φ C = E S