Metamath Proof Explorer


Theorem strfvnd

Description: Deduction version of strfvn . (Contributed by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses strfvnd.c E = Slot N
strfvnd.f φ S V
Assertion strfvnd φ E S = S N

Proof

Step Hyp Ref Expression
1 strfvnd.c E = Slot N
2 strfvnd.f φ S V
3 elex S V S V
4 fveq1 x = S x N = S N
5 df-slot Slot N = x V x N
6 1 5 eqtri E = x V x N
7 fvex S N V
8 4 6 7 fvmpt S V E S = S N
9 2 3 8 3syl φ E S = S N