Metamath Proof Explorer


Theorem strle2

Description: Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypotheses strle1.i I
strle1.a A = I
strle2.j I < J
strle2.k J
strle2.b B = J
Assertion strle2 A X B Y Struct I J

Proof

Step Hyp Ref Expression
1 strle1.i I
2 strle1.a A = I
3 strle2.j I < J
4 strle2.k J
5 strle2.b B = J
6 df-pr A X B Y = A X B Y
7 1 2 strle1 A X Struct I I
8 4 5 strle1 B Y Struct J J
9 7 8 3 strleun A X B Y Struct I J
10 6 9 eqbrtri A X B Y Struct I J