Metamath Proof Explorer


Theorem strle3

Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypotheses strle1.i I
strle1.a A = I
strle2.j I < J
strle2.k J
strle2.b B = J
strle3.k J < K
strle3.l K
strle3.c C = K
Assertion strle3 A X B Y C Z Struct I K

Proof

Step Hyp Ref Expression
1 strle1.i I
2 strle1.a A = I
3 strle2.j I < J
4 strle2.k J
5 strle2.b B = J
6 strle3.k J < K
7 strle3.l K
8 strle3.c C = K
9 df-tp A X B Y C Z = A X B Y C Z
10 1 2 3 4 5 strle2 A X B Y Struct I J
11 7 8 strle1 C Z Struct K K
12 10 11 6 strleun A X B Y C Z Struct I K
13 9 12 eqbrtri A X B Y C Z Struct I K