| Step |
Hyp |
Ref |
Expression |
| 1 |
|
strlem3a.1 |
|
| 2 |
|
id |
|
| 3 |
|
simpl |
|
| 4 |
|
pjhcl |
|
| 5 |
2 3 4
|
syl2anr |
|
| 6 |
|
normcl |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
resqcld |
|
| 9 |
7
|
sqge0d |
|
| 10 |
|
normge0 |
|
| 11 |
5 10
|
syl |
|
| 12 |
|
pjnorm |
|
| 13 |
2 3 12
|
syl2anr |
|
| 14 |
|
simplr |
|
| 15 |
13 14
|
breqtrd |
|
| 16 |
|
2nn0 |
|
| 17 |
|
exple1 |
|
| 18 |
16 17
|
mpan2 |
|
| 19 |
7 11 15 18
|
syl3anc |
|
| 20 |
|
elicc01 |
|
| 21 |
8 9 19 20
|
syl3anbrc |
|
| 22 |
21 1
|
fmptd |
|
| 23 |
|
helch |
|
| 24 |
1
|
strlem2 |
|
| 25 |
23 24
|
ax-mp |
|
| 26 |
|
pjch1 |
|
| 27 |
26
|
fveq2d |
|
| 28 |
27
|
oveq1d |
|
| 29 |
|
oveq1 |
|
| 30 |
|
sq1 |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
28 31
|
sylan9eq |
|
| 33 |
25 32
|
eqtrid |
|
| 34 |
|
pjcjt2 |
|
| 35 |
34
|
imp |
|
| 36 |
35
|
fveq2d |
|
| 37 |
36
|
oveq1d |
|
| 38 |
|
pjopyth |
|
| 39 |
38
|
imp |
|
| 40 |
37 39
|
eqtrd |
|
| 41 |
|
chjcl |
|
| 42 |
41
|
3adant3 |
|
| 43 |
42
|
adantr |
|
| 44 |
1
|
strlem2 |
|
| 45 |
43 44
|
syl |
|
| 46 |
|
3simpa |
|
| 47 |
46
|
adantr |
|
| 48 |
1
|
strlem2 |
|
| 49 |
1
|
strlem2 |
|
| 50 |
48 49
|
oveqan12d |
|
| 51 |
47 50
|
syl |
|
| 52 |
40 45 51
|
3eqtr4d |
|
| 53 |
52
|
3exp1 |
|
| 54 |
53
|
com3r |
|
| 55 |
54
|
adantr |
|
| 56 |
55
|
ralrimdv |
|
| 57 |
56
|
ralrimiv |
|
| 58 |
|
isst |
|
| 59 |
22 33 57 58
|
syl3anbrc |
|