Metamath Proof Explorer


Theorem strleun

Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypotheses strleun.f F Struct A B
strleun.g G Struct C D
strleun.l B < C
Assertion strleun F G Struct A D

Proof

Step Hyp Ref Expression
1 strleun.f F Struct A B
2 strleun.g G Struct C D
3 strleun.l B < C
4 isstruct F Struct A B A B A B Fun F dom F A B
5 1 4 mpbi A B A B Fun F dom F A B
6 5 simp1i A B A B
7 6 simp1i A
8 isstruct G Struct C D C D C D Fun G dom G C D
9 2 8 mpbi C D C D Fun G dom G C D
10 9 simp1i C D C D
11 10 simp2i D
12 6 simp3i A B
13 6 simp2i B
14 13 nnrei B
15 10 simp1i C
16 15 nnrei C
17 14 16 3 ltleii B C
18 7 nnrei A
19 18 14 16 letri A B B C A C
20 12 17 19 mp2an A C
21 10 simp3i C D
22 11 nnrei D
23 18 16 22 letri A C C D A D
24 20 21 23 mp2an A D
25 7 11 24 3pm3.2i A D A D
26 5 simp2i Fun F
27 9 simp2i Fun G
28 26 27 pm3.2i Fun F Fun G
29 difss F F
30 dmss F F dom F dom F
31 29 30 ax-mp dom F dom F
32 5 simp3i dom F A B
33 31 32 sstri dom F A B
34 difss G G
35 dmss G G dom G dom G
36 34 35 ax-mp dom G dom G
37 9 simp3i dom G C D
38 36 37 sstri dom G C D
39 ss2in dom F A B dom G C D dom F dom G A B C D
40 33 38 39 mp2an dom F dom G A B C D
41 fzdisj B < C A B C D =
42 3 41 ax-mp A B C D =
43 sseq0 dom F dom G A B C D A B C D = dom F dom G =
44 40 42 43 mp2an dom F dom G =
45 funun Fun F Fun G dom F dom G = Fun F G
46 28 44 45 mp2an Fun F G
47 difundir F G = F G
48 47 funeqi Fun F G Fun F G
49 46 48 mpbir Fun F G
50 dmun dom F G = dom F dom G
51 13 nnzi B
52 11 nnzi D
53 14 16 22 letri B C C D B D
54 17 21 53 mp2an B D
55 eluz2 D B B D B D
56 51 52 54 55 mpbir3an D B
57 fzss2 D B A B A D
58 56 57 ax-mp A B A D
59 32 58 sstri dom F A D
60 7 nnzi A
61 15 nnzi C
62 eluz2 C A A C A C
63 60 61 20 62 mpbir3an C A
64 fzss1 C A C D A D
65 63 64 ax-mp C D A D
66 37 65 sstri dom G A D
67 59 66 unssi dom F dom G A D
68 50 67 eqsstri dom F G A D
69 isstruct F G Struct A D A D A D Fun F G dom F G A D
70 25 49 68 69 mpbir3an F G Struct A D