Metamath Proof Explorer


Theorem strov2rcl

Description: Partial reverse closure for any structure defined as a two-argument function. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 2-Dec-2019)

Ref Expression
Hypotheses strov2rcl.s S = I F R
strov2rcl.b B = Base S
strov2rcl.f Rel dom F
Assertion strov2rcl X B I V

Proof

Step Hyp Ref Expression
1 strov2rcl.s S = I F R
2 strov2rcl.b B = Base S
3 strov2rcl.f Rel dom F
4 3 1 2 elbasov X B I V R V
5 4 simpld X B I V