Metamath Proof Explorer


Theorem strss

Description: Propagate component extraction to a structure T from a subset structure S . (Contributed by Mario Carneiro, 11-Oct-2013) (Revised by Mario Carneiro, 15-Jan-2014)

Ref Expression
Hypotheses strss.t T V
strss.f Fun T
strss.s S T
strss.e E = Slot E ndx
strss.n E ndx C S
Assertion strss E T = E S

Proof

Step Hyp Ref Expression
1 strss.t T V
2 strss.f Fun T
3 strss.s S T
4 strss.e E = Slot E ndx
5 strss.n E ndx C S
6 1 a1i T V
7 2 a1i Fun T
8 3 a1i S T
9 5 a1i E ndx C S
10 4 6 7 8 9 strssd E T = E S
11 10 mptru E T = E S