Metamath Proof Explorer


Theorem strssd

Description: Deduction version of strss . (Contributed by Mario Carneiro, 15-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses strssd.e E = Slot E ndx
strssd.t φ T V
strssd.f φ Fun T
strssd.s φ S T
strssd.n φ E ndx C S
Assertion strssd φ E T = E S

Proof

Step Hyp Ref Expression
1 strssd.e E = Slot E ndx
2 strssd.t φ T V
3 strssd.f φ Fun T
4 strssd.s φ S T
5 strssd.n φ E ndx C S
6 4 5 sseldd φ E ndx C T
7 1 2 3 6 strfvd φ C = E T
8 2 4 ssexd φ S V
9 funss S T Fun T Fun S
10 4 3 9 sylc φ Fun S
11 1 8 10 5 strfvd φ C = E S
12 7 11 eqtr3d φ E T = E S