Metamath Proof Explorer


Theorem structcnvcnv

Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Assertion structcnvcnv F Struct X F -1 -1 = F

Proof

Step Hyp Ref Expression
1 0nelxp ¬ V × V
2 cnvcnv F -1 -1 = F V × V
3 inss2 F V × V V × V
4 2 3 eqsstri F -1 -1 V × V
5 4 sseli F -1 -1 V × V
6 1 5 mto ¬ F -1 -1
7 disjsn F -1 -1 = ¬ F -1 -1
8 6 7 mpbir F -1 -1 =
9 cnvcnvss F -1 -1 F
10 reldisj F -1 -1 F F -1 -1 = F -1 -1 F
11 9 10 ax-mp F -1 -1 = F -1 -1 F
12 8 11 mpbi F -1 -1 F
13 12 a1i F Struct X F -1 -1 F
14 structn0fun F Struct X Fun F
15 funrel Fun F Rel F
16 14 15 syl F Struct X Rel F
17 dfrel2 Rel F F -1 -1 = F
18 16 17 sylib F Struct X F -1 -1 = F
19 difss F F
20 cnvss F F F -1 F -1
21 cnvss F -1 F -1 F -1 -1 F -1 -1
22 19 20 21 mp2b F -1 -1 F -1 -1
23 18 22 eqsstrrdi F Struct X F F -1 -1
24 13 23 eqssd F Struct X F -1 -1 = F