Metamath Proof Explorer


Theorem structfn

Description: Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis structfn.1 F Struct M N
Assertion structfn Fun F -1 -1 dom F 1 N

Proof

Step Hyp Ref Expression
1 structfn.1 F Struct M N
2 1 structfun Fun F -1 -1
3 isstruct F Struct M N M N M N Fun F dom F M N
4 1 3 mpbi M N M N Fun F dom F M N
5 4 simp3i dom F M N
6 4 simp1i M N M N
7 6 simp1i M
8 elnnuz M M 1
9 7 8 mpbi M 1
10 fzss1 M 1 M N 1 N
11 9 10 ax-mp M N 1 N
12 5 11 sstri dom F 1 N
13 2 12 pm3.2i Fun F -1 -1 dom F 1 N