Metamath Proof Explorer


Theorem structtocusgr

Description: Any (extensible) structure with a base set can be made a complete simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021) (Revised by AV, 17-Nov-2021) (Proof shortened by AV, 14-Feb-2022)

Ref Expression
Hypotheses structtousgr.p P = x 𝒫 Base S | x = 2
structtousgr.s φ S Struct X
structtousgr.g G = S sSet ef ndx I P
structtousgr.b φ Base ndx dom S
Assertion structtocusgr φ G ComplUSGraph

Proof

Step Hyp Ref Expression
1 structtousgr.p P = x 𝒫 Base S | x = 2
2 structtousgr.s φ S Struct X
3 structtousgr.g G = S sSet ef ndx I P
4 structtousgr.b φ Base ndx dom S
5 1 2 3 4 structtousgr φ G USGraph
6 simpr φ v Vtx G v Vtx G
7 eldifi n Vtx G v n Vtx G
8 6 7 anim12ci φ v Vtx G n Vtx G v n Vtx G v Vtx G
9 eldifsni n Vtx G v n v
10 9 adantl φ v Vtx G n Vtx G v n v
11 fvexd φ v Vtx G n Vtx G v Base S V
12 3 fveq2i Vtx G = Vtx S sSet ef ndx I P
13 eqid ef ndx = ef ndx
14 fvex Base S V
15 1 cusgrexilem1 Base S V I P V
16 14 15 mp1i φ I P V
17 13 2 4 16 setsvtx φ Vtx S sSet ef ndx I P = Base S
18 12 17 syl5eq φ Vtx G = Base S
19 18 eleq2d φ v Vtx G v Base S
20 19 biimpa φ v Vtx G v Base S
21 20 adantr φ v Vtx G n Vtx G v v Base S
22 18 difeq1d φ Vtx G v = Base S v
23 22 eleq2d φ n Vtx G v n Base S v
24 23 biimpd φ n Vtx G v n Base S v
25 24 adantr φ v Vtx G n Vtx G v n Base S v
26 25 imp φ v Vtx G n Vtx G v n Base S v
27 1 cusgrexilem2 Base S V v Base S n Base S v e ran I P v n e
28 11 21 26 27 syl21anc φ v Vtx G n Vtx G v e ran I P v n e
29 edgval Edg G = ran iEdg G
30 3 fveq2i iEdg G = iEdg S sSet ef ndx I P
31 13 2 4 16 setsiedg φ iEdg S sSet ef ndx I P = I P
32 30 31 syl5eq φ iEdg G = I P
33 32 rneqd φ ran iEdg G = ran I P
34 29 33 syl5eq φ Edg G = ran I P
35 34 rexeqdv φ e Edg G v n e e ran I P v n e
36 35 ad2antrr φ v Vtx G n Vtx G v e Edg G v n e e ran I P v n e
37 28 36 mpbird φ v Vtx G n Vtx G v e Edg G v n e
38 eqid Vtx G = Vtx G
39 eqid Edg G = Edg G
40 38 39 nbgrel n G NeighbVtx v n Vtx G v Vtx G n v e Edg G v n e
41 8 10 37 40 syl3anbrc φ v Vtx G n Vtx G v n G NeighbVtx v
42 41 ralrimiva φ v Vtx G n Vtx G v n G NeighbVtx v
43 38 uvtxel v UnivVtx G v Vtx G n Vtx G v n G NeighbVtx v
44 6 42 43 sylanbrc φ v Vtx G v UnivVtx G
45 44 ralrimiva φ v Vtx G v UnivVtx G
46 5 elexd φ G V
47 38 iscplgr G V G ComplGraph v Vtx G v UnivVtx G
48 46 47 syl φ G ComplGraph v Vtx G v UnivVtx G
49 45 48 mpbird φ G ComplGraph
50 iscusgr G ComplUSGraph G USGraph G ComplGraph
51 5 49 50 sylanbrc φ G ComplUSGraph