Metamath Proof Explorer


Theorem structtousgr

Description: Any (extensible) structure with a base set can be made a simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021) (Revised by AV, 17-Nov-2021)

Ref Expression
Hypotheses structtousgr.p P = x 𝒫 Base S | x = 2
structtousgr.s φ S Struct X
structtousgr.g G = S sSet ef ndx I P
structtousgr.b φ Base ndx dom S
Assertion structtousgr φ G USGraph

Proof

Step Hyp Ref Expression
1 structtousgr.p P = x 𝒫 Base S | x = 2
2 structtousgr.s φ S Struct X
3 structtousgr.g G = S sSet ef ndx I P
4 structtousgr.b φ Base ndx dom S
5 eqid Base S = Base S
6 eqid ef ndx = ef ndx
7 fvex Base S V
8 1 cusgrexilem1 Base S V I P V
9 7 8 mp1i φ I P V
10 1 usgrexilem Base S V I P : dom I P 1-1 x 𝒫 Base S | x = 2
11 7 10 mp1i φ I P : dom I P 1-1 x 𝒫 Base S | x = 2
12 5 6 2 4 9 11 usgrstrrepe φ S sSet ef ndx I P USGraph
13 3 12 eqeltrid φ G USGraph