Metamath Proof Explorer


Theorem structvtxval

Description: The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020) (Proof shortened by AV, 12-Nov-2021)

Ref Expression
Hypotheses structvtxvallem.s S
structvtxvallem.b Base ndx < S
structvtxvallem.g G = Base ndx V S E
Assertion structvtxval V X E Y Vtx G = V

Proof

Step Hyp Ref Expression
1 structvtxvallem.s S
2 structvtxvallem.b Base ndx < S
3 structvtxvallem.g G = Base ndx V S E
4 3 2 1 2strstr1 G Struct Base ndx S
5 4 a1i V X E Y G Struct Base ndx S
6 1 2 3 structvtxvallem V X E Y 2 dom G
7 simpl V X E Y V X
8 opex Base ndx V V
9 8 prid1 Base ndx V Base ndx V S E
10 9 3 eleqtrri Base ndx V G
11 10 a1i V X E Y Base ndx V G
12 5 6 7 11 basvtxval V X E Y Vtx G = V