Metamath Proof Explorer


Theorem structvtxvallem

Description: Lemma for structvtxval and structiedg0val . (Contributed by AV, 23-Sep-2020) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypotheses structvtxvallem.s S
structvtxvallem.b Base ndx < S
structvtxvallem.g G = Base ndx V S E
Assertion structvtxvallem V X E Y 2 dom G

Proof

Step Hyp Ref Expression
1 structvtxvallem.s S
2 structvtxvallem.b Base ndx < S
3 structvtxvallem.g G = Base ndx V S E
4 fvexd V X E Y Base ndx V
5 1 a1i V X E Y S
6 simpl V X E Y V X
7 simpr V X E Y E Y
8 prex Base ndx V S E V
9 3 8 eqeltri G V
10 9 a1i V X E Y G V
11 basendxnn Base ndx
12 11 nnrei Base ndx
13 12 2 ltneii Base ndx S
14 13 a1i V X E Y Base ndx S
15 3 eqimss2i Base ndx V S E G
16 15 a1i V X E Y Base ndx V S E G
17 4 5 6 7 10 14 16 hashdmpropge2 V X E Y 2 dom G