Metamath Proof Explorer


Theorem sub1cncfd

Description: Subtracting a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses sub1cncfd.1 φ A
sub1cncfd.2 F = x x A
Assertion sub1cncfd φ F : cn

Proof

Step Hyp Ref Expression
1 sub1cncfd.1 φ A
2 sub1cncfd.2 F = x x A
3 ssid
4 cncfmptid x x : cn
5 3 3 4 mp2an x x : cn
6 5 a1i φ x x : cn
7 3 a1i φ
8 cncfmptc A x A : cn
9 1 7 7 8 syl3anc φ x A : cn
10 6 9 subcncf φ x x A : cn
11 2 10 eqeltrid φ F : cn