Metamath Proof Explorer


Theorem sub2cncf

Description: Subtraction from a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypothesis sub2cncf.1 F = x A x
Assertion sub2cncf A F : cn

Proof

Step Hyp Ref Expression
1 sub2cncf.1 F = x A x
2 eqid TopOpen fld = TopOpen fld
3 2 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
4 3 a1i A TopOpen fld × t TopOpen fld Cn TopOpen fld
5 ssid
6 cncfmptc A x A : cn
7 5 5 6 mp3an23 A x A : cn
8 eqid x x = x x
9 8 idcncf x x : cn
10 9 a1i A x x : cn
11 2 4 7 10 cncfmpt2f A x A x : cn
12 1 11 eqeltrid A F : cn