Metamath Proof Explorer


Theorem sub2cncfd

Description: Subtraction from a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses sub2cncfd.1 φ A
sub2cncfd.2 F = x A x
Assertion sub2cncfd φ F : cn

Proof

Step Hyp Ref Expression
1 sub2cncfd.1 φ A
2 sub2cncfd.2 F = x A x
3 ssid
4 3 a1i φ
5 cncfmptc A x A : cn
6 1 4 4 5 syl3anc φ x A : cn
7 cncfmptid x x : cn
8 3 3 7 mp2an x x : cn
9 8 a1i φ x x : cn
10 6 9 subcncf φ x A x : cn
11 2 10 eqeltrid φ F : cn