Metamath Proof Explorer


Theorem sub2times

Description: Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion sub2times A A 2 A = A

Proof

Step Hyp Ref Expression
1 2times A 2 A = A + A
2 1 oveq2d A A 2 A = A A + A
3 id A A
4 3 3 addcld A A + A
5 3 4 negsubd A A + A + A = A A + A
6 3 3 negdid A A + A = - A + A
7 6 oveq2d A A + A + A = A + A + A
8 negcl A A
9 3 8 8 addassd A A + A + A = A + A + A
10 negid A A + A = 0
11 10 oveq1d A A + A + A = 0 + A
12 8 addid2d A 0 + A = A
13 11 12 eqtrd A A + A + A = A
14 7 9 13 3eqtr2d A A + A + A = A
15 2 5 14 3eqtr2d A A 2 A = A