Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
sub4
Next ⟩
neg0
Metamath Proof Explorer
Ascii
Unicode
Theorem
sub4
Description:
Rearrangement of 4 terms in a subtraction.
(Contributed by
NM
, 23-Nov-2007)
Ref
Expression
Assertion
sub4
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
-
B
-
C
−
D
=
A
-
C
-
B
−
D
Proof
Step
Hyp
Ref
Expression
1
addcom
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
+
C
=
C
+
B
2
1
ad2ant2lr
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
B
+
C
=
C
+
B
3
2
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
D
-
B
+
C
=
A
+
D
-
C
+
B
4
subadd4
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
-
B
-
C
−
D
=
A
+
D
-
B
+
C
5
subadd4
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
∧
D
∈
ℂ
→
A
-
C
-
B
−
D
=
A
+
D
-
C
+
B
6
5
an4s
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
-
C
-
B
−
D
=
A
+
D
-
C
+
B
7
3
4
6
3eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
-
B
-
C
−
D
=
A
-
C
-
B
−
D