Metamath Proof Explorer


Theorem sub4

Description: Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007)

Ref Expression
Assertion sub4 A B C D A - B - C D = A - C - B D

Proof

Step Hyp Ref Expression
1 addcom B C B + C = C + B
2 1 ad2ant2lr A B C D B + C = C + B
3 2 oveq2d A B C D A + D - B + C = A + D - C + B
4 subadd4 A B C D A - B - C D = A + D - B + C
5 subadd4 A C B D A - C - B D = A + D - C + B
6 5 an4s A B C D A - C - B D = A + D - C + B
7 3 4 6 3eqtr4d A B C D A - B - C D = A - C - B D