Metamath Proof Explorer


Theorem subadd2

Description: Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subadd2 A B C A B = C C + B = A

Proof

Step Hyp Ref Expression
1 subadd A B C A B = C B + C = A
2 simp2 A B C B
3 simp3 A B C C
4 2 3 addcomd A B C B + C = C + B
5 4 eqeq1d A B C B + C = A C + B = A
6 1 5 bitrd A B C A B = C C + B = A