Metamath Proof Explorer


Theorem subadd4

Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006)

Ref Expression
Assertion subadd4 A B C D A - B - C D = A + D - B + C

Proof

Step Hyp Ref Expression
1 subcl A B A B
2 subsub2 A B C D A - B - C D = A B + D - C
3 2 3expb A B C D A - B - C D = A B + D - C
4 1 3 sylan A B C D A - B - C D = A B + D - C
5 addsub4 A D B C A + D - B + C = A B + D - C
6 5 an42s A B C D A + D - B + C = A B + D - C
7 4 6 eqtr4d A B C D A - B - C D = A + D - B + C