Metamath Proof Explorer


Theorem subadd4b

Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses subadd4b.1 φ A
subadd4b.2 φ B
subadd4b.3 φ C
subadd4b.4 φ D
Assertion subadd4b φ A B + C - D = A D + C - B

Proof

Step Hyp Ref Expression
1 subadd4b.1 φ A
2 subadd4b.2 φ B
3 subadd4b.3 φ C
4 subadd4b.4 φ D
5 1 2 4 3 subadd4d φ A - B - D C = A + C - B + D
6 1 2 subcld φ A B
7 6 4 3 subsub2d φ A - B - D C = A B + C - D
8 2 4 addcomd φ B + D = D + B
9 8 oveq2d φ A + C - B + D = A + C - D + B
10 1 3 4 2 addsub4d φ A + C - D + B = A D + C - B
11 9 10 eqtrd φ A + C - B + D = A D + C - B
12 5 7 11 3eqtr3d φ A B + C - D = A D + C - B