Metamath Proof Explorer


Theorem subaddeqd

Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020)

Ref Expression
Hypotheses subaddeqd.a φ A
subaddeqd.b φ B
subaddeqd.c φ C
subaddeqd.d φ D
subaddeqd.1 φ A + B = C + D
Assertion subaddeqd φ A D = C B

Proof

Step Hyp Ref Expression
1 subaddeqd.a φ A
2 subaddeqd.b φ B
3 subaddeqd.c φ C
4 subaddeqd.d φ D
5 subaddeqd.1 φ A + B = C + D
6 5 oveq1d φ A + B - D + B = C + D - D + B
7 3 4 addcomd φ C + D = D + C
8 7 oveq1d φ C + D - D + B = D + C - D + B
9 6 8 eqtrd φ A + B - D + B = D + C - D + B
10 1 4 2 pnpcan2d φ A + B - D + B = A D
11 4 3 2 pnpcand φ D + C - D + B = C B
12 9 10 11 3eqtr3d φ A D = C B