Metamath Proof Explorer


Theorem subaddsd

Description: Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses subaddsd.1 φ A No
subaddsd.2 φ B No
subaddsd.3 φ C No
Assertion subaddsd Could not format assertion : No typesetting found for |- ( ph -> ( ( A -s B ) = C <-> ( B +s C ) = A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 subaddsd.1 φ A No
2 subaddsd.2 φ B No
3 subaddsd.3 φ C No
4 subadds Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s B ) = C <-> ( B +s C ) = A ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s B ) = C <-> ( B +s C ) = A ) ) with typecode |-
5 1 2 3 4 syl3anc Could not format ( ph -> ( ( A -s B ) = C <-> ( B +s C ) = A ) ) : No typesetting found for |- ( ph -> ( ( A -s B ) = C <-> ( B +s C ) = A ) ) with typecode |-