Step |
Hyp |
Ref |
Expression |
1 |
|
subbascn.1 |
|
2 |
|
subbascn.2 |
|
3 |
|
subbascn.3 |
|
4 |
|
subbascn.4 |
|
5 |
1 3 4
|
tgcn |
|
6 |
2
|
adantr |
|
7 |
|
ssfii |
|
8 |
|
ssralv |
|
9 |
6 7 8
|
3syl |
|
10 |
|
vex |
|
11 |
|
elfi |
|
12 |
10 6 11
|
sylancr |
|
13 |
|
simpr2 |
|
14 |
13
|
imaeq2d |
|
15 |
|
ffun |
|
16 |
15
|
ad2antlr |
|
17 |
13 10
|
eqeltrrdi |
|
18 |
|
intex |
|
19 |
17 18
|
sylibr |
|
20 |
|
intpreima |
|
21 |
16 19 20
|
syl2anc |
|
22 |
14 21
|
eqtrd |
|
23 |
|
topontop |
|
24 |
1 23
|
syl |
|
25 |
24
|
ad2antrr |
|
26 |
|
simpr1 |
|
27 |
26
|
elin2d |
|
28 |
26
|
elin1d |
|
29 |
28
|
elpwid |
|
30 |
|
simpr3 |
|
31 |
|
ssralv |
|
32 |
29 30 31
|
sylc |
|
33 |
|
iinopn |
|
34 |
25 27 19 32 33
|
syl13anc |
|
35 |
22 34
|
eqeltrd |
|
36 |
35
|
3exp2 |
|
37 |
36
|
rexlimdv |
|
38 |
12 37
|
sylbid |
|
39 |
38
|
com23 |
|
40 |
39
|
ralrimdv |
|
41 |
|
imaeq2 |
|
42 |
41
|
eleq1d |
|
43 |
42
|
cbvralvw |
|
44 |
40 43
|
syl6ibr |
|
45 |
9 44
|
impbid |
|
46 |
45
|
pm5.32da |
|
47 |
5 46
|
bitrd |
|