Metamath Proof Explorer


Theorem subcan

Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subcan A B C A B = A C B = C

Proof

Step Hyp Ref Expression
1 simp2 A B C B
2 simp1 A B C A
3 1 2 addcomd A B C B + A = A + B
4 3 eqeq1d A B C B + A = A + C A + B = A + C
5 simp3 A B C C
6 addsubeq4 B A A C B + A = A + C A B = A C
7 1 2 2 5 6 syl22anc A B C B + A = A + C A B = A C
8 addcan A B C A + B = A + C B = C
9 4 7 8 3bitr3d A B C A B = A C B = C