Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
subcan2
Next ⟩
subeq0
Metamath Proof Explorer
Ascii
Unicode
Theorem
subcan2
Description:
Cancellation law for subtraction.
(Contributed by
NM
, 8-Feb-2005)
Ref
Expression
Assertion
subcan2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
C
=
B
−
C
↔
A
=
B
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
∈
ℂ
2
simp3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
∈
ℂ
3
subcl
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
−
C
∈
ℂ
4
3
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
−
C
∈
ℂ
5
subadd2
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
−
C
∈
ℂ
→
A
−
C
=
B
−
C
↔
B
-
C
+
C
=
A
6
1
2
4
5
syl3anc
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
C
=
B
−
C
↔
B
-
C
+
C
=
A
7
npcan
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
-
C
+
C
=
B
8
7
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
-
C
+
C
=
B
9
8
eqeq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
-
C
+
C
=
A
↔
B
=
A
10
eqcom
⊢
B
=
A
↔
A
=
B
11
9
10
bitrdi
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
-
C
+
C
=
A
↔
A
=
B
12
6
11
bitrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
C
=
B
−
C
↔
A
=
B