Metamath Proof Explorer


Theorem subcan2d

Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 22-Sep-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
subcan2d.4 φ A C = B C
Assertion subcan2d φ A = B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 subcan2d.4 φ A C = B C
5 subcan2 A B C A C = B C A = B
6 1 2 3 5 syl3anc φ A C = B C A = B
7 4 6 mpbid φ A = B