Metamath Proof Explorer


Theorem subccat

Description: A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subccat.1 D = C cat J
subccat.j φ J Subcat C
Assertion subccat φ D Cat

Proof

Step Hyp Ref Expression
1 subccat.1 D = C cat J
2 subccat.j φ J Subcat C
3 eqidd φ dom dom J = dom dom J
4 2 3 subcfn φ J Fn dom dom J × dom dom J
5 eqid Id C = Id C
6 1 2 4 5 subccatid φ D Cat Id D = x dom dom J Id C x
7 6 simpld φ D Cat