Step |
Hyp |
Ref |
Expression |
1 |
|
subccat.1 |
|
2 |
|
subccat.j |
|
3 |
|
subccatid.1 |
|
4 |
|
subccatid.2 |
|
5 |
|
eqid |
|
6 |
|
subcrcl |
|
7 |
2 6
|
syl |
|
8 |
2 3 5
|
subcss1 |
|
9 |
1 5 7 3 8
|
rescbas |
|
10 |
1 5 7 3 8
|
reschom |
|
11 |
|
eqid |
|
12 |
1 5 7 3 8 11
|
rescco |
|
13 |
1
|
ovexi |
|
14 |
13
|
a1i |
|
15 |
|
biid |
|
16 |
2
|
adantr |
|
17 |
3
|
adantr |
|
18 |
|
simpr |
|
19 |
16 17 18 4
|
subcidcl |
|
20 |
|
eqid |
|
21 |
7
|
adantr |
|
22 |
8
|
adantr |
|
23 |
|
simpr1l |
|
24 |
22 23
|
sseldd |
|
25 |
|
simpr1r |
|
26 |
22 25
|
sseldd |
|
27 |
2
|
adantr |
|
28 |
3
|
adantr |
|
29 |
27 28 20 23 25
|
subcss2 |
|
30 |
|
simpr31 |
|
31 |
29 30
|
sseldd |
|
32 |
5 20 4 21 24 11 26 31
|
catlid |
|
33 |
|
simpr2l |
|
34 |
22 33
|
sseldd |
|
35 |
27 28 20 25 33
|
subcss2 |
|
36 |
|
simpr32 |
|
37 |
35 36
|
sseldd |
|
38 |
5 20 4 21 26 11 34 37
|
catrid |
|
39 |
27 28 23 11 25 33 30 36
|
subccocl |
|
40 |
|
simpr2r |
|
41 |
22 40
|
sseldd |
|
42 |
27 28 20 33 40
|
subcss2 |
|
43 |
|
simpr33 |
|
44 |
42 43
|
sseldd |
|
45 |
5 20 11 21 24 26 34 31 37 41 44
|
catass |
|
46 |
9 10 12 14 15 19 32 38 39 45
|
iscatd2 |
|