| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subccat.1 |  | 
						
							| 2 |  | subccat.j |  | 
						
							| 3 |  | subccatid.1 |  | 
						
							| 4 |  | subccatid.2 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | subcrcl |  | 
						
							| 7 | 2 6 | syl |  | 
						
							| 8 | 2 3 5 | subcss1 |  | 
						
							| 9 | 1 5 7 3 8 | rescbas |  | 
						
							| 10 | 1 5 7 3 8 | reschom |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 1 5 7 3 8 11 | rescco |  | 
						
							| 13 | 1 | ovexi |  | 
						
							| 14 | 13 | a1i |  | 
						
							| 15 |  | biid |  | 
						
							| 16 | 2 | adantr |  | 
						
							| 17 | 3 | adantr |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 | 16 17 18 4 | subcidcl |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 7 | adantr |  | 
						
							| 22 | 8 | adantr |  | 
						
							| 23 |  | simpr1l |  | 
						
							| 24 | 22 23 | sseldd |  | 
						
							| 25 |  | simpr1r |  | 
						
							| 26 | 22 25 | sseldd |  | 
						
							| 27 | 2 | adantr |  | 
						
							| 28 | 3 | adantr |  | 
						
							| 29 | 27 28 20 23 25 | subcss2 |  | 
						
							| 30 |  | simpr31 |  | 
						
							| 31 | 29 30 | sseldd |  | 
						
							| 32 | 5 20 4 21 24 11 26 31 | catlid |  | 
						
							| 33 |  | simpr2l |  | 
						
							| 34 | 22 33 | sseldd |  | 
						
							| 35 | 27 28 20 25 33 | subcss2 |  | 
						
							| 36 |  | simpr32 |  | 
						
							| 37 | 35 36 | sseldd |  | 
						
							| 38 | 5 20 4 21 26 11 34 37 | catrid |  | 
						
							| 39 | 27 28 23 11 25 33 30 36 | subccocl |  | 
						
							| 40 |  | simpr2r |  | 
						
							| 41 | 22 40 | sseldd |  | 
						
							| 42 | 27 28 20 33 40 | subcss2 |  | 
						
							| 43 |  | simpr33 |  | 
						
							| 44 | 42 43 | sseldd |  | 
						
							| 45 | 5 20 11 21 24 26 34 31 37 41 44 | catass |  | 
						
							| 46 | 9 10 12 14 15 19 32 38 39 45 | iscatd2 |  |