Step |
Hyp |
Ref |
Expression |
1 |
|
subcidcl.j |
|
2 |
|
subcidcl.2 |
|
3 |
|
subcidcl.x |
|
4 |
|
subccocl.o |
|
5 |
|
subccocl.y |
|
6 |
|
subccocl.z |
|
7 |
|
subccocl.f |
|
8 |
|
subccocl.g |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
subcrcl |
|
12 |
1 11
|
syl |
|
13 |
9 10 4 12 2
|
issubc2 |
|
14 |
1 13
|
mpbid |
|
15 |
14
|
simprd |
|
16 |
5
|
adantr |
|
17 |
6
|
ad2antrr |
|
18 |
7
|
ad3antrrr |
|
19 |
|
simpllr |
|
20 |
|
simplr |
|
21 |
19 20
|
oveq12d |
|
22 |
18 21
|
eleqtrrd |
|
23 |
8
|
ad4antr |
|
24 |
|
simpllr |
|
25 |
|
simplr |
|
26 |
24 25
|
oveq12d |
|
27 |
23 26
|
eleqtrrd |
|
28 |
|
simp-5r |
|
29 |
|
simp-4r |
|
30 |
28 29
|
opeq12d |
|
31 |
|
simpllr |
|
32 |
30 31
|
oveq12d |
|
33 |
|
simpr |
|
34 |
|
simplr |
|
35 |
32 33 34
|
oveq123d |
|
36 |
28 31
|
oveq12d |
|
37 |
35 36
|
eleq12d |
|
38 |
27 37
|
rspcdv |
|
39 |
22 38
|
rspcimdv |
|
40 |
17 39
|
rspcimdv |
|
41 |
16 40
|
rspcimdv |
|
42 |
41
|
adantld |
|
43 |
3 42
|
rspcimdv |
|
44 |
15 43
|
mpd |
|