Metamath Proof Explorer


Theorem subcfn

Description: An element in the set of subcategories is a binary function. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcixp.1 φ J Subcat C
subcfn.2 φ S = dom dom J
Assertion subcfn φ J Fn S × S

Proof

Step Hyp Ref Expression
1 subcixp.1 φ J Subcat C
2 subcfn.2 φ S = dom dom J
3 eqid Hom 𝑓 C = Hom 𝑓 C
4 1 3 subcssc φ J cat Hom 𝑓 C
5 4 2 sscfn1 φ J Fn S × S