Metamath Proof Explorer


Theorem subcid

Description: The identity in a subcategory is the same as the original category. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subccat.1 D = C cat J
subccat.j φ J Subcat C
subccatid.1 φ J Fn S × S
subccatid.2 1 ˙ = Id C
subcid.x φ X S
Assertion subcid φ 1 ˙ X = Id D X

Proof

Step Hyp Ref Expression
1 subccat.1 D = C cat J
2 subccat.j φ J Subcat C
3 subccatid.1 φ J Fn S × S
4 subccatid.2 1 ˙ = Id C
5 subcid.x φ X S
6 1 2 3 4 subccatid φ D Cat Id D = x S 1 ˙ x
7 6 simprd φ Id D = x S 1 ˙ x
8 simpr φ x = X x = X
9 8 fveq2d φ x = X 1 ˙ x = 1 ˙ X
10 fvexd φ 1 ˙ X V
11 7 9 5 10 fvmptd φ Id D X = 1 ˙ X
12 11 eqcomd φ 1 ˙ X = Id D X