Metamath Proof Explorer


Theorem subcidcl

Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcidcl.j φ J Subcat C
subcidcl.2 φ J Fn S × S
subcidcl.x φ X S
subcidcl.1 1 ˙ = Id C
Assertion subcidcl φ 1 ˙ X X J X

Proof

Step Hyp Ref Expression
1 subcidcl.j φ J Subcat C
2 subcidcl.2 φ J Fn S × S
3 subcidcl.x φ X S
4 subcidcl.1 1 ˙ = Id C
5 fveq2 x = X 1 ˙ x = 1 ˙ X
6 id x = X x = X
7 6 6 oveq12d x = X x J x = X J X
8 5 7 eleq12d x = X 1 ˙ x x J x 1 ˙ X X J X
9 eqid Hom 𝑓 C = Hom 𝑓 C
10 eqid comp C = comp C
11 subcrcl J Subcat C C Cat
12 1 11 syl φ C Cat
13 9 4 10 12 2 issubc2 φ J Subcat C J cat Hom 𝑓 C x S 1 ˙ x x J x y S z S f x J y g y J z g x y comp C z f x J z
14 1 13 mpbid φ J cat Hom 𝑓 C x S 1 ˙ x x J x y S z S f x J y g y J z g x y comp C z f x J z
15 simpl 1 ˙ x x J x y S z S f x J y g y J z g x y comp C z f x J z 1 ˙ x x J x
16 15 ralimi x S 1 ˙ x x J x y S z S f x J y g y J z g x y comp C z f x J z x S 1 ˙ x x J x
17 14 16 simpl2im φ x S 1 ˙ x x J x
18 8 17 3 rspcdva φ 1 ˙ X X J X