Metamath Proof Explorer


Theorem subcn2

Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion subcn2 A + B C y + z + u v u B < y v C < z u - v - B C < A

Proof

Step Hyp Ref Expression
1 negcl C C
2 addcn2 A + B C y + z + u w u B < y w C < z u + w - B + C < A
3 1 2 syl3an3 A + B C y + z + u w u B < y w C < z u + w - B + C < A
4 negcl v v
5 fvoveq1 w = v w C = - v - C
6 5 breq1d w = v w C < z - v - C < z
7 6 anbi2d w = v u B < y w C < z u B < y - v - C < z
8 oveq2 w = v u + w = u + v
9 8 fvoveq1d w = v u + w - B + C = u + v - B + C
10 9 breq1d w = v u + w - B + C < A u + v - B + C < A
11 7 10 imbi12d w = v u B < y w C < z u + w - B + C < A u B < y - v - C < z u + v - B + C < A
12 11 rspcv v w u B < y w C < z u + w - B + C < A u B < y - v - C < z u + v - B + C < A
13 4 12 syl v w u B < y w C < z u + w - B + C < A u B < y - v - C < z u + v - B + C < A
14 13 adantl A + B C u v w u B < y w C < z u + w - B + C < A u B < y - v - C < z u + v - B + C < A
15 simpr A + B C u v v
16 simpll3 A + B C u v C
17 15 16 neg2subd A + B C u v - v - C = C v
18 17 fveq2d A + B C u v - v - C = C v
19 16 15 abssubd A + B C u v C v = v C
20 18 19 eqtrd A + B C u v - v - C = v C
21 20 breq1d A + B C u v - v - C < z v C < z
22 21 anbi2d A + B C u v u B < y - v - C < z u B < y v C < z
23 negsub u v u + v = u v
24 23 adantll A + B C u v u + v = u v
25 simpll2 A + B C u v B
26 25 16 negsubd A + B C u v B + C = B C
27 24 26 oveq12d A + B C u v u + v - B + C = u - v - B C
28 27 fveq2d A + B C u v u + v - B + C = u - v - B C
29 28 breq1d A + B C u v u + v - B + C < A u - v - B C < A
30 22 29 imbi12d A + B C u v u B < y - v - C < z u + v - B + C < A u B < y v C < z u - v - B C < A
31 14 30 sylibd A + B C u v w u B < y w C < z u + w - B + C < A u B < y v C < z u - v - B C < A
32 31 ralrimdva A + B C u w u B < y w C < z u + w - B + C < A v u B < y v C < z u - v - B C < A
33 32 ralimdva A + B C u w u B < y w C < z u + w - B + C < A u v u B < y v C < z u - v - B C < A
34 33 reximdv A + B C z + u w u B < y w C < z u + w - B + C < A z + u v u B < y v C < z u - v - B C < A
35 34 reximdv A + B C y + z + u w u B < y w C < z u + w - B + C < A y + z + u v u B < y v C < z u - v - B C < A
36 3 35 mpd A + B C y + z + u v u B < y v C < z u - v - B C < A