Metamath Proof Explorer


Theorem subcrcl

Description: Reverse closure for the subcategory predicate. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion subcrcl H Subcat C C Cat

Proof

Step Hyp Ref Expression
1 df-subc Subcat = c Cat h | h cat Hom 𝑓 c [˙ dom dom h / s]˙ x s Id c x x h x y s z s f x h y g y h z g x y comp c z f x h z
2 1 mptrcl H Subcat C C Cat