Metamath Proof Explorer


Theorem subcss1

Description: The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcss1.1 φ J Subcat C
subcss1.2 φ J Fn S × S
subcss1.b B = Base C
Assertion subcss1 φ S B

Proof

Step Hyp Ref Expression
1 subcss1.1 φ J Subcat C
2 subcss1.2 φ J Fn S × S
3 subcss1.b B = Base C
4 eqid Hom 𝑓 C = Hom 𝑓 C
5 4 3 homffn Hom 𝑓 C Fn B × B
6 5 a1i φ Hom 𝑓 C Fn B × B
7 1 4 subcssc φ J cat Hom 𝑓 C
8 2 6 7 ssc1 φ S B