Metamath Proof Explorer


Theorem subcss2

Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcss1.1 φ J Subcat C
subcss1.2 φ J Fn S × S
subcss2.h H = Hom C
subcss2.x φ X S
subcss2.y φ Y S
Assertion subcss2 φ X J Y X H Y

Proof

Step Hyp Ref Expression
1 subcss1.1 φ J Subcat C
2 subcss1.2 φ J Fn S × S
3 subcss2.h H = Hom C
4 subcss2.x φ X S
5 subcss2.y φ Y S
6 eqid Hom 𝑓 C = Hom 𝑓 C
7 1 6 subcssc φ J cat Hom 𝑓 C
8 2 7 4 5 ssc2 φ X J Y X Hom 𝑓 C Y
9 eqid Base C = Base C
10 1 2 9 subcss1 φ S Base C
11 10 4 sseldd φ X Base C
12 10 5 sseldd φ Y Base C
13 6 9 3 11 12 homfval φ X Hom 𝑓 C Y = X H Y
14 8 13 sseqtrd φ X J Y X H Y