Metamath Proof Explorer


Theorem subcssc

Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses subcixp.1 φ J Subcat C
subcssc.h H = Hom 𝑓 C
Assertion subcssc φ J cat H

Proof

Step Hyp Ref Expression
1 subcixp.1 φ J Subcat C
2 subcssc.h H = Hom 𝑓 C
3 eqid Id C = Id C
4 eqid comp C = comp C
5 subcrcl J Subcat C C Cat
6 1 5 syl φ C Cat
7 eqidd φ dom dom J = dom dom J
8 2 3 4 6 7 issubc φ J Subcat C J cat H x dom dom J Id C x x J x y dom dom J z dom dom J f x J y g y J z g x y comp C z f x J z
9 1 8 mpbid φ J cat H x dom dom J Id C x x J x y dom dom J z dom dom J f x J y g y J z g x y comp C z f x J z
10 9 simpld φ J cat H