Metamath Proof Explorer


Theorem subdi

Description: Distribution of multiplication over subtraction. Theorem I.5 of Apostol p. 18. (Contributed by NM, 18-Nov-2004)

Ref Expression
Assertion subdi A B C A B C = A B A C

Proof

Step Hyp Ref Expression
1 simp1 A B C A
2 simp3 A B C C
3 subcl B C B C
4 3 3adant1 A B C B C
5 1 2 4 adddid A B C A C + B - C = A C + A B C
6 pncan3 C B C + B - C = B
7 6 ancoms B C C + B - C = B
8 7 3adant1 A B C C + B - C = B
9 8 oveq2d A B C A C + B - C = A B
10 5 9 eqtr3d A B C A C + A B C = A B
11 mulcl A B A B
12 11 3adant3 A B C A B
13 mulcl A C A C
14 13 3adant2 A B C A C
15 mulcl A B C A B C
16 3 15 sylan2 A B C A B C
17 16 3impb A B C A B C
18 12 14 17 subaddd A B C A B A C = A B C A C + A B C = A B
19 10 18 mpbird A B C A B A C = A B C
20 19 eqcomd A B C A B C = A B A C