Metamath Proof Explorer


Theorem subdivcomb1

Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013)

Ref Expression
Assertion subdivcomb1 A B C C 0 C A B C = A B C

Proof

Step Hyp Ref Expression
1 simp3l A B C C 0 C
2 simp1 A B C C 0 A
3 1 2 mulcld A B C C 0 C A
4 divsubdir C A B C C 0 C A B C = C A C B C
5 3 4 syld3an1 A B C C 0 C A B C = C A C B C
6 divcan3 A C C 0 C A C = A
7 6 3expb A C C 0 C A C = A
8 7 3adant2 A B C C 0 C A C = A
9 8 oveq1d A B C C 0 C A C B C = A B C
10 5 9 eqtrd A B C C 0 C A B C = A B C