Metamath Proof Explorer


Theorem subdivcomb2

Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013)

Ref Expression
Assertion subdivcomb2 A B C C 0 A C B C = A C B

Proof

Step Hyp Ref Expression
1 simp3l A B C C 0 C
2 simp2 A B C C 0 B
3 1 2 mulcld A B C C 0 C B
4 divsubdir A C B C C 0 A C B C = A C C B C
5 3 4 syld3an2 A B C C 0 A C B C = A C C B C
6 simprl B C C 0 C
7 simpl B C C 0 B
8 simpr B C C 0 C C 0
9 div23 C B C C 0 C B C = C C B
10 6 7 8 9 syl3anc B C C 0 C B C = C C B
11 divid C C 0 C C = 1
12 11 oveq1d C C 0 C C B = 1 B
13 mulid2 B 1 B = B
14 12 13 sylan9eqr B C C 0 C C B = B
15 10 14 eqtrd B C C 0 C B C = B
16 15 3adant1 A B C C 0 C B C = B
17 16 oveq2d A B C C 0 A C C B C = A C B
18 5 17 eqtrd A B C C 0 A C B C = A C B