Metamath Proof Explorer


Theorem subeluzsub

Description: Membership of a difference in an earlier upper set of integers. (Contributed by AV, 10-May-2022)

Ref Expression
Assertion subeluzsub M N K M K M N

Proof

Step Hyp Ref Expression
1 eluzelz N K N
2 zsubcl M N M N
3 1 2 sylan2 M N K M N
4 eluzel2 N K K
5 zsubcl M K M K
6 4 5 sylan2 M N K M K
7 4 zred N K K
8 7 adantl M N K K
9 1 zred N K N
10 9 adantl M N K N
11 zre M M
12 11 adantr M N K M
13 eluzle N K K N
14 13 adantl M N K K N
15 8 10 12 14 lesub2dd M N K M N M K
16 eluz2 M K M N M N M K M N M K
17 3 6 15 16 syl3anbrc M N K M K M N